Jeżeli nie znalazłeś poszukiwanej książki, skontaktuj się z nami wypełniając formularz kontaktowy.

Ta strona używa plików cookies, by ułatwić korzystanie z serwisu. Mogą Państwo określić warunki przechowywania lub dostępu do plików cookies w swojej przeglądarce zgodnie z polityką prywatności.

Wydawcy

Literatura do programów

Informacje szczegółowe o książce

Differential Geometry - ISBN 9783319855622

Differential Geometry

ISBN 9783319855622

Autor: Loring W. Tu

Wydawca: Springer

Dostępność: 3-6 tygodni

Cena: 267,75 zł

Przed złożeniem zamówienia prosimy o kontakt mailowy celem potwierdzenia ceny.


ISBN13:      

9783319855622

Autor:      

Loring W. Tu

Oprawa:      

Paperback

Rok Wydania:      

2017

Numer Wydania:      

1

Ilość stron:      

347

This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text.Prerequisite material is contained in authors text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included.Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einsteins general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromovs work and to probability theory as in Diaconiss work. It is not too far-fetched to argue that differential geometry should be in every mathematicians arsenal.

Preface.- Chapter 1. Curvature and Vector Fields.- 1. Riemannian Manifolds.- 2. Curves.- 3. Surfaces in Space.- 4. Directional Derivative in Euclidean Space.- 5. The Shape Operator.- 6. Affine Connections.- 7. Vector Bundles.- 8. Gausss Theorema Egregium.- 9. Generalizations to Hypersurfaces in Rn+1.- Chapter 2. Curvature and Differential Forms.- 10. Connections on a Vector Bundle.- 11. Connection, Curvature, and Torsion Forms.- 12. The Theorema Egregium Using Forms.- Chapter 3. Geodesics.- 13. More on Affine Connections.- 14. Geodesics.- 15. Exponential Maps.- 16. Distance and Volume.- 17. The Gauss-Bonnet Theorem.- Chapter 4. Tools from Algebra and Topology.- 18. The Tensor Product and the Dual Module.- 19. The Exterior Power.- 20. Operations on Vector Bundles.- 21. Vector-Valued Forms.- Chapter 5. Vector Bundles and Characteristic Classes.- 22. Connections and Curvature Again.- 23. Characteristic Classes.- 24. Pontrjagin Classes.- 25. The Euler Class and Chern Classes.- 26. Some Applications of Characteristic Classes.- Chapter 6. Principal Bundles and Characteristic Classes.- 27. Principal Bundles.- 28. Connections on a Principal Bundle.- 29. Horizontal Distributions on a Frame Bundle.- 30. Curvature on a Principal Bundle.- 31. Covariant Derivative on a Principal Bundle.- 32. Character Classes of Principal Bundles.- A. Manifolds.- B. Invariant Polynomials.- Hints and Solutions to Selected End-of-Section Problems.- List of Notations.- References.- Index.

Koszyk

Książek w koszyku: 0 szt.

Wartość zakupów: 0,00 zł

ebooks
covid

Kontakt

Gambit
Centrum Oprogramowania
i Szkoleń Sp. z o.o.

Al. Pokoju 29b/22-24

31-564 Kraków


Siedziba Księgarni

ul. Kordylewskiego 1

31-542 Kraków

+48 12 410 5991

+48 12 410 5987

+48 12 410 5989

Zobacz na mapie google

Wyślij e-mail

Subskrypcje

Administratorem danych osobowych jest firma Gambit COiS Sp. z o.o. Na podany adres będzie wysyłany wyłącznie biuletyn informacyjny.

Autoryzacja płatności

PayU

Informacje na temat autoryzacji płatności poprzez PayU.

PayU banki

© Copyright 2012: GAMBIT COiS Sp. z o.o. Wszelkie prawa zastrzeżone.

Projekt i wykonanie: Alchemia Studio Reklamy