Jeżeli nie znalazłeś poszukiwanej książki, skontaktuj się z nami wypełniając formularz kontaktowy.

Ta strona używa plików cookies, by ułatwić korzystanie z serwisu. Mogą Państwo określić warunki przechowywania lub dostępu do plików cookies w swojej przeglądarce zgodnie z polityką prywatności.

Wydawcy

Literatura do programów

Informacje szczegółowe o książce

Motivic Integration - ISBN 9781493978854

Motivic Integration

ISBN 9781493978854

Autor: Antoine Chambert-Loir Johannes Nicaise Julien Sebag

Wydawca: Springer

Dostępność: 3-6 tygodni

Cena: 612,15 zł

Przed złożeniem zamówienia prosimy o kontakt mailowy celem potwierdzenia ceny.


ISBN13:      

9781493978854

Autor:      

Antoine Chambert-Loir Johannes Nicaise Julien Sebag

Oprawa:      

Hardback

Rok Wydania:      

2018

Numer Wydania:      

1

Ilość stron:      

526

This monograph focuses on the geometric theory of motivic integration, which takes its values in the Grothendieck ring of varieties. This theory is rooted in a groundbreaking idea of Kontsevich and was further developed by Denef & Loeser and Sebag. It is presented in the context of formal schemes over a discrete valuation ring, without any restriction on the residue characteristic. The text first discusses the main features of the Grothendieck ring of varieties, arc schemes, and Greenberg schemes. It then moves on to motivic integration and its applications to birational geometry and non-Archimedean geometry. Also included in the work is a prologue on p-adic analytic manifolds, which served as a model for motivic integration. With its extensive discussion of preliminaries and applications, this book is an ideal resource for graduate students of algebraic geometry and researchers of motivic integration. It will also serve as a motivation for more recent and sophisticated theories that have been developed since.

Introduction.- Prologue: p-adic Integration.- Analytic Manifolds.- The Theorem of Batyrev-Kontsevich.- Igusas Local Zeta Function.- The Grothendieck Ring of Varieties.- Additive Invariants on Algebraic Varieties.- Motivic Measures.- Cohomolical Realizations.- Localization, Completion, and Modification.- The Theorem of Bittner.- The Theorem of Larsen–Lunts and Its Applications.- Arc Schemes.- Weil Restriction.- Jet Schemes.- The Arc Scheme of a Variety.- Topological Properties of Arc Schemes.- The Theorem of Grinberg–Kazhdan–Drinfeld.- Greenberg Schemes.- Complete Discrete Valuation Rings.- The Ring Schemes Rn.- Greenberg Schemes.- Topological Properties of Greenberg Schemes.- Structure Theoremes for Greenberg Schemes.- Greenberg Approximation on Formal Schemes.- The Structure of the Truncation Morphisms.- Greenberg Schemes and Morphisms of Formal Schemes.- Motivic Integration.- Motivic Integration in the Smooth Case.- The Volume of a Constructibel Subset.- Measurable Subsets of Greenberg Schemes.- Motivic Integrals.- Semi-algebraic Subsets of Greenberg Schemes.- Applications.- Kapranovs Motivic Zeta Function.- Valuations and the Space of Arcs.- Motivic Volume and Birational Invariants.- Denef-Loesers Zeta Function and the Monodromy Conjecture.- Motivic Invariants of Non-Archimedean Analytic Spaces.- Motivic Zeta Functions of Formal Shemes and Analytic Spaces.- Motivic Serre Invariants of Algebraic Varieties.- Appendix.- Constructibility in Algebraic Geometry.- Birational Geometry.- Formal and Non-Archimedean Geometry.- Index.- Bibliography.

Koszyk

Książek w koszyku: 0 szt.

Wartość zakupów: 0,00 zł

ebooks
covid

Kontakt

Gambit
Centrum Oprogramowania
i Szkoleń Sp. z o.o.

Al. Pokoju 29b/22-24

31-564 Kraków


Siedziba Księgarni

ul. Kordylewskiego 1

31-542 Kraków

+48 12 410 5991

+48 12 410 5987

+48 12 410 5989

Zobacz na mapie google

Wyślij e-mail

Subskrypcje

Administratorem danych osobowych jest firma Gambit COiS Sp. z o.o. Na podany adres będzie wysyłany wyłącznie biuletyn informacyjny.

Autoryzacja płatności

PayU

Informacje na temat autoryzacji płatności poprzez PayU.

PayU banki

© Copyright 2012: GAMBIT COiS Sp. z o.o. Wszelkie prawa zastrzeżone.

Projekt i wykonanie: Alchemia Studio Reklamy