Jeżeli nie znalazłeś poszukiwanej książki, skontaktuj się z nami wypełniając formularz kontaktowy.

Ta strona używa plików cookies, by ułatwić korzystanie z serwisu. Mogą Państwo określić warunki przechowywania lub dostępu do plików cookies w swojej przeglądarce zgodnie z polityką prywatności.

Wydawcy

Literatura do programów

Informacje szczegółowe o książce

Handbook of Mathematical Relations in Particulate Materials Processing: Ceramics, Powder Metals, Cermets, Carbides, Hard Materials, and Minerals - ISBN 9780470173640

Handbook of Mathematical Relations in Particulate Materials Processing: Ceramics, Powder Metals, Cermets, Carbides, Hard Materials, and Minerals

ISBN 9780470173640

Autor: Randall M. German, Seong Jin Park

Wydawca: Wiley

Dostępność: 3-6 tygodni

Cena: 740,25 zł

Przed złożeniem zamówienia prosimy o kontakt mailowy celem potwierdzenia ceny.


ISBN13:      

9780470173640

ISBN10:      

0470173645

Autor:      

Randall M. German, Seong Jin Park

Oprawa:      

Hardback

Rok Wydania:      

2008-09-26

Ilość stron:      

460

Wymiary:      

233x157

Tematy:      

PB

The only handbook of mathematical relations with a focus on particulate materials processing
The National Science Foundation estimates that over 35% of materials–related funding is now directed toward modeling. In part, this reflects the increased knowledge and the high cost of experimental work. However, currently there is no organized reference book to help the particulate materials community with sorting out various relations. This book fills that important need, providing readers with a quick–reference handbook for easy consultation.
This one–of–a–kind handbook gives readers the relevant mathematical relations needed to model behavior, generate computer simulations, analyze experiment data, and quantify physical and chemical phenomena commonly found in particulate materials processing. It goes beyond the traditional barriers of only one material class by covering the major areas in ceramics, cemented carbides, powder metallurgy, and particulate materials. In many cases, the governing equations are the same but the terms are material–specific. To rise above these differences, the authors have assembled the basic mathematics around the following topical structure:
Powder technology relations, such as those encountered in atomization, milling, powder production, powder characterization, mixing, particle packing, and powder testing
Powder processing, such as uniaxial compaction, injection molding, slurry and paste shaping techniques, polymer pyrolysis, sintering, hot isostatic pressing, and forging, with accompanying relations associated with microstructure development and microstructure coarsening
Finishing operations, such as surface treatments, heat treatments, microstructure analysis, material testing, data analysis, and structure–property relations
Handbook of Mathematical Relations in Particulate Materials Processing is suited for quick reference with stand–alone definitions, making it the perfect complement to existing resources used by academic researchers, corporate product and process developers, and various scientists, engineers, and technicians working in materials processing.

Spis treści:
PARTIAL TABLE OF CONTENTS
Foreword.
About the Authors.
A
Abnormal Grain Growth.
Abrasive Wear—See Friction and Wear Testing.
Acceleration of Free–settling Particles.
Activated Sintering, Early–stage Shrinkage.
Activation Energy—See Arrhenius Relation.
Adsorption—See BET Specific Surface Area.
Agglomerate Strength.
Agglomeration Force.
Agglomeration of Nanoscale Particles—See Nanoparticle Agglomeration.
Andreasen Size Distribution.
B
Ball Milling—See Jar Milling.
Bearing Strength.
Bell Curve—See Gaussian Distribution.
Bending–beam Viscosity.
Bending Test.
BET Equivalent Spherical–particle Diameter.
BET Specific Surface Area.
Bimodal Powder Packing.
Bimodal Powder Sintering.
Binder Burnout—See Polymer Pyrolysis.
C
Cantilever–beam Test—See Bending–beam Viscosity.
Capillarity.
Capillarity–induced Sintering—See Surface Curvature–Driven Mass Flow in Sintering.
Capillary Pressure during Liquid–phase Sintering—See Mean Capillary Pressure.
Capillary Rise—See Washburn Equation.
Capillary Stress—See Laplace Equation.
Case Carburization.
Casson Model.
Cemented–carbide Hardness.
Centrifugal Atomization Droplet Size.
D
Darcy’s Law.
Debinding—See Polymer Pyrolysis, Solvent Debinding Time, Thermal Debinding Time, Vacuum Thermal Debinding Time, and Wicking.
Debinding Master Curve&# 226;€”See Master Decomposition Curve.
Debinding Temperature.
Debinding Time—See Solvent Debinding Time, Thermal Debinding Time, Vacuum Thermal Debinding Time, and Wicking.
Debinding by Solvent Immersion—See Solvent Debinding Time.
Debinding Weight Loss.
Delubrication—See Polymer Pyrolysis.
Densification.
Densification in Liquid–phase Sintering—See Dissolution–induced Densification.
E
Effective Pressure.
Ejection Stress—See Maximum Ejection Stress.
Elastic Behavior—See Hooke’s Law.
Elastic deformation Neck–size Ratio.
Elastic–modulus Variation with Density.
Elastic–property Variation with Porosity.
Electrical–conductivity Variation with Porosity.
Electromigration Contributions to Spark Sintering.
Elongation.
Elongation Variation with Density—See Sintered Ductility.
F
Feedstock Formulation.
Feedstock Viscosity—See Suspension Viscosity and Viscosity Model for Infection–molding Feedstock.
Feedstock Viscosity as a Function of Shear Rate—See Cross Model.
Feedstock Yield Strength—See Yield Strength of Particle–Polymer Feedstock.
Fiber–fracture from Buckling.
Fiber–fracture Probability.
Fiber Packing Density.
Fick’s First Law.
Fick’s Second Law.
Field–activated Sintering.
G
Gas–absorption Surface Area—See BET Specific Surface Area.
Gas–atomization Cooling Rate.
Gas–atomization Melt Flow Rate.
Gas–atomization Particle Size.
Gas–generated Final Pores.
Gas Permeability—See Kozeny–Carman Equation.
Gate Strain Rate in Injection Molding.
Gaudin–Schuhmann distribution.
Gaussian Distribution.
Gel 211;densification Model.
H
Hall–Petch Relation.
Hardenability Factor.
Hardness.
Hardness Variation with Grain Size in Cemented Carbides.
Heating–rate Effect in Transient Liquid–phase Sintering.
Heat Transfer in Sintered Materials.
Heat–transfer Rate in Modeling—See Cooling Rate in Molding.
Herring Scaling Law.
Hertzian stress—See Elastic Deformation Neck–size Ratio.
Heterodiffusion—See Mixed–powder Sintering Shrinkage.
I
Impregnation—See Infiltration Pressure.
Inertial–flow Equation.
Infiltration Depth.
Infiltration Pressure.
Infiltration Rate.
Inhibited Grain Growth—See Zener Relation.
Initial–stage Liquid–phase Sintering Stress—See Sintering Stress in Initial–stage Liquid–phase Sintering.
Initial–stage Neck Growth.
Initial–stage Sintering—See Surface Diffusion–Controlled Neck Growth.
Initial–stage Sintering Model—See Kuczynski Neck–growth Model.
J
Jar Milling.
Jet Mixing Time.
K
Kawakita Equation.
Kelvin Equation.
Kelvin Model—See Viscoelastic Model for Powder–Polymer Mixtures.
K–Factor.
Kingery Intermediate–stage Liquid–phase Sintering Model—See Intermediate–stage Liquid–phase Sintering Model.
Kingery Model for Pressure–assisted Liquid–phase Sintering—See Pressure–assisted Liquid–phase Sintering.
Kingery Rearrangement Shrinkage Kinetics—See Rearrangement Kinetics in Initial–stage Liquid–phase Sintering.
Kissinger Method.
Knoop Hardness.
Knudsen Diffusion—See Vapor Mean Free Path.
L
Laminar Flow Settling—See Stokes’ Law.
Lap

Koszyk

Książek w koszyku: 0 szt.

Wartość zakupów: 0,00 zł

ebooks
covid

Kontakt

Gambit
Centrum Oprogramowania
i Szkoleń Sp. z o.o.

Al. Pokoju 29b/22-24

31-564 Kraków


Siedziba Księgarni

ul. Kordylewskiego 1

31-542 Kraków

+48 12 410 5991

+48 12 410 5987

+48 12 410 5989

Zobacz na mapie google

Wyślij e-mail

Subskrypcje

Administratorem danych osobowych jest firma Gambit COiS Sp. z o.o. Na podany adres będzie wysyłany wyłącznie biuletyn informacyjny.

Autoryzacja płatności

PayU

Informacje na temat autoryzacji płatności poprzez PayU.

PayU banki

© Copyright 2012: GAMBIT COiS Sp. z o.o. Wszelkie prawa zastrzeżone.

Projekt i wykonanie: Alchemia Studio Reklamy