Jeżeli nie znalazłeś poszukiwanej książki, skontaktuj się z nami wypełniając formularz kontaktowy.

Ta strona używa plików cookies, by ułatwić korzystanie z serwisu. Mogą Państwo określić warunki przechowywania lub dostępu do plików cookies w swojej przeglądarce zgodnie z polityką prywatności.

Wydawcy

Literatura do programów

Informacje szczegółowe o książce

Statistical Analysis and Modelling of Spatial Point Patterns - ISBN 9780470014912

Statistical Analysis and Modelling of Spatial Point Patterns

ISBN 9780470014912

Autor: Janine Illian, Antti Penttinen, Helga Stoyan, Dietrich Stoyan

Wydawca: Wiley

Dostępność: 3-6 tygodni

Cena: 619,50 zł

Przed złożeniem zamówienia prosimy o kontakt mailowy celem potwierdzenia ceny.


ISBN13:      

9780470014912

ISBN10:      

0470014911

Autor:      

Janine Illian, Antti Penttinen, Helga Stoyan, Dietrich Stoyan

Oprawa:      

Hardback

Rok Wydania:      

2008-01-18

Ilość stron:      

560

Wymiary:      

229x152

Tematy:      

PB

Spatial point processes are mathematical models used to describe and analyse the geometrical structure of patterns formed by objects that are irregularly or randomly distributed in one–, two– or three–dimensional space. Examples include locations of trees in a forest, blood particles on a glass plate, galaxies in the universe, and particle centres in samples of material.
Numerous aspects of the nature of a specific spatial point pattern may be described using the appropriate statistical methods. Statistical Analysis and Modelling of Spatial Point Patterns provides a practical guide to the use of these specialised methods. The application–oriented approach helps demonstrate the benefits of this increasingly popular branch of statistics to a broad audience.
The book:
Provides an introduction to spatial point patterns for researchers across numerous areas of application.
Adopts an extremely accessible style, allowing the non–statistician complete understanding.
Describes the process of extracting knowledge from the data, emphasising the marked point process.
Demonstrates the analysis of complex datasets, using applied examples from areas including biology, forestry, and materials science.
Features a supplementary website containing example datasets.
Statistical Analysis and Modelling of Spatial Point Patterns is ideally suited for researchers in the many areas of application, including environmental statistics, ecology, physics, materials science, geostatistics, and biology. It is also suitable for students of statistics, mathematics, computer science, biology and geoinformatics.
Companion website:
www.wiley.com/go/penttinen     

Spis treści:
Preface.
List of Examples.
1. Introduction.
1.1 Point process statistics.
1.2 Examples of point process data.
1.2.1 A pattern of ama crine cells.
1.2.2 Gold particles.
1.2.3 A pattern of Western Australian plants.
1.2.4 Waterstriders.
1.2.5 A sample of concrete.
1.3 Historical notes.
1.3.1 Determination of number of trees in a forest.
1.3.2 Number of blood particles in a sample.
1.3.3 Patterns of points in plant communities.
1.3.4 Formulating the power law for the pair correlation function for galaxies.
1.4 Sampling and data collection.
1.4.1 General remarks.
1.4.2 Choosing an appropriate study area.
1.4.3 Data collection.
1.5 Fundamentals of the theory of point processes.
1.6 Stationarity and isotropy.
1.6.1 Model approach and design approach.
1.6.2 Finite and infinite point processes.
1.6.3 Stationarity and isotropy.
1.6.4 Ergodicity.
1.7 Summary characteristics for point processes.
1.7.1 Numerical summary characteristics.
1.7.2 Functional summary characteristics.
1.8 Secondary structures of point processes.
1.8.1 Introduction.
1.8.2 Random sets.
1.8.3 Random fields.
1.8.4 Tessellations.
1.8.5 Neighbour networks or graphs.
1.9 Simulation of point processes.
2. The Homogeneous Poisson point process.
2.1 Introduction.
2.2 The binomial point process.
2.2.1 Introduction.
2.2.2 Basic properties.
2.2.3 The periodic binomial process.
2.2.4 Simulation of the binomial process.
2.3 The homogeneous Poisson point process.
2.3.1 Introduction.
2.3.2 Basic properties.
2.3.3 Characterisations of the homogeneous Poisson process.
2.4 Simulation of a homogeneous Poisson process.
2.5 Model characteristics.
2.5.1 Moments and moment measures.
2.5.2 The Palm distribution of a homogeneous Poisson process.
2.5.3 Summary characteristics of the homogeneous Poisson process.
2.6 Estimating the intensity.
2.7 Testing complete spatial randomness.
2.7.1 Introduction.
2.7.2 Quadrat counts.
2.7.3 Distance methods.
2.7.4 The J–test.
2.7.5 Two index–based t ests.
2.7.6 Discrepancy tests.
2.7.7 The L–test.
2.7.8 Other tests and recommendations.
3. Finite point processes.
3.1 Introduction.
3.2 Distributions of numbers of points.
3.2.1 The binomial distribution.
3.2.2 The Poisson distribution.
3.2.3 Compound distributions.
3.2.4 Generalised distributions.
3.3 Intensity functions and their estimation.
3.3.1 Parametric statistics for the intensity function.
3.3.2 Non–parametric estimation of the intensity function.
3.3.3 Estimating the point density distribution function.
3.4 Inhomogeneous Poisson process and finite Cox process.
3.4.1 The inhomogeneous Poisson process.
3.4.2 The finite Cox process.
3.5 Summary characteristics for finite point processes.
3.5.1 Nearest–neighbour distances.
3.5.2 Dilation function.
3.5.3 Graph–theoretic statistics.
3.5.4 Second–order characteristics.
3.6 Finite Gibbs processes.
3.6.1 Introduction.
3.6.2 Gibbs processes with fixed number of points.
3.6.3 Gibbs processes with a random number of points.
3.6.4 Second–order summary characteristics of finite Gibbs processes.
3.6.5 Further discussion.
3.6.6 Statistical inference for finite Gibbs processes.
4. Stationary point processes.
4.1 Basic definitions and notation.
4.2 Summary characteristics for stationary point processes.
4.2.1 Introduction.
4.2.2 Edge–correction methods.
4.2.3 The intensity λ.
4.2.4 Indices as summary characteristics.
4.2.5 Empty–space statistics and other morphological summaries.
4.2.6 The nearest–neighbour distance distribution function.
4.2.7 The J–function.
4.3 Second–order characteristics.
4.3.1 The three functions: K, L and g.
4.3.2 Theoretical foundations of second–order characteristics.
4.3.3 Estimators of the second–order characteristics.
4.3.4 Interpretation of pair correlation functions.
4.4 Higher–order and topological characteristics.
4.4.1 Introduction.
4.4.2 Third–order characteristics.
4.4.3 Delaunay tessellation characteristics.
4.4.4 The connectivity function.
4.5 Orientation analysis for stationary point processes.
4.5.1 Introduction.
4.5.2 Nearest–neighbour orientation distribution.
4.5.3 Second–order orientation analysis.
4.6 Outliers, gaps and residuals.
4.6.1 Introduction.
4.6.2 Simple outlier detection.
4.6.3 Simple gap detection.
4.6.4 Model–based outliers.
4.6.5 Residuals.
4.7 Replicated patterns.
4.7.1 Introduction.
4.7.2 Aggregation recipes.
4.8 Choosing appropriate observation windows.
4.8.1 General ideas.
4.8.2 Representative windows.
4.9 Multivariate analysis of series of point patterns.
4.10 Summary characteristics for the non–stationary case.
4.10.1 Formal application of stationary characteristics and estimators.
4.10.2 Intensity reweighting.
4.10.3 Local rescaling.
5. Stationary marked point processes.
5.1 Basic definitions and notation.
5.1.1 Introduction.
5.1.2 Marks and their properties.
5.1.3 Marking models.
5.1.4 Stationarity.
5.1.5 First–order characteristics.
5.1.6 Mark–sum measure.
5.1.7 Palm distribution.
5.2 Summary characteristics.
5.2.1 Introduction.
5.2.2 Intensity and mark–sum intensity.
5.2.3 Mean mark, mark d.f. and mark probabilities.
5.2.4 Indices for stationary marked point processes.
5.2.5 Nearest–neighbour distributions.
5.3 Second–order characteristics for marked point processes.
5.3.1 Introduction.
5.3.2 Definitions for qualitative marks.
5.3.3 Definitions for quantitative marks.
5.3.4 Estimation of second–order characteristics.
5.4 Orientation analysis for marked point processes.
5.4.1 Introduction.
5.4.2 Orientation analysis for non–isotropic processes with angul

Koszyk

Książek w koszyku: 0 szt.

Wartość zakupów: 0,00 zł

ebooks
covid

Kontakt

Gambit
Centrum Oprogramowania
i Szkoleń Sp. z o.o.

Al. Pokoju 29b/22-24

31-564 Kraków


Siedziba Księgarni

ul. Kordylewskiego 1

31-542 Kraków

+48 12 410 5991

+48 12 410 5987

+48 12 410 5989

Zobacz na mapie google

Wyślij e-mail

Subskrypcje

Administratorem danych osobowych jest firma Gambit COiS Sp. z o.o. Na podany adres będzie wysyłany wyłącznie biuletyn informacyjny.

Autoryzacja płatności

PayU

Informacje na temat autoryzacji płatności poprzez PayU.

PayU banki

© Copyright 2012: GAMBIT COiS Sp. z o.o. Wszelkie prawa zastrzeżone.

Projekt i wykonanie: Alchemia Studio Reklamy