Jeżeli nie znalazłeś poszukiwanej książki, skontaktuj się z nami wypełniając formularz kontaktowy.

Ta strona używa plików cookies, by ułatwić korzystanie z serwisu. Mogą Państwo określić warunki przechowywania lub dostępu do plików cookies w swojej przeglądarce zgodnie z polityką prywatności.

Wydawcy

Literatura do programów

Informacje szczegółowe o książce

Using Mathematica for Quantum Mechanics: A Students Manual - ISBN 9789811375873

Using Mathematica for Quantum Mechanics: A Students Manual

ISBN 9789811375873

Autor: Roman Schmied

Wydawca: Springer

Dostępność: 3-6 tygodni

Cena: 450,45 zł

Przed złożeniem zamówienia prosimy o kontakt mailowy celem potwierdzenia ceny.


ISBN13:      

9789811375873

ISBN10:      

9811375879

Autor:      

Roman Schmied

Oprawa:      

Hardback

Rok Wydania:      

2019-10-17

Ilość stron:      

193

This book revisits many of the problems encountered in introductory quantum mechanics, focusing on computer implementations for finding and visualizing analytical and numerical solutions. It subsequently uses these implementations as building blocks to solve more complex problems, such as coherent laser-driven dynamics in the Rubidium hyperfine structure or the Rashba interaction of an electron moving in 2D. The simulations are highlighted using the programming language Mathematica. No prior knowledge of Mathematica is needed; alternatives, such as Matlab, Python, or Maple, can also be used.

Author Biography: PD Dr. Roman Schmied studied physics at the Ecole Polytechnique Federale de Lausanne and the University of Texas at Austin. He wrote his diploma thesis on helium nanodroplet spectroscopy at Princeton University with Kevin Lehmann and Giacinto Scoles, and later obtained his Ph.D. from the same group, working on the superfluidity of helium nanodroplets and on the spectroscopy of molecules solvated within these droplets. He carried out his postdoctoral work at the Max Planck Institute of Quantum Optics in Garching, Germany, where he first began working with quantum simulators and quantum simulations. After a short stay at the NIST ion storage group in Boulder, USA, he took on his current position at the University of Basel, where he was habilitated in 2017. Since 2016 he has also been working at the University's Human Optics Lab, where he is currently using digital technology for child health, particularly eye health.

1 Wolfram language overview 1.1 introduction1.1.1 exercises1.2 variables and assignments1.2.1 immediate and delayed assignments1.2.2 exercises1.3 four kinds of bracketing1.4 prefix and postfix1.4.1 exercises1.5 programming constructs1.5.1 procedural programming1.5.2 exercises1.5.3 functional programming1.5.4 exercises1.6 function definitions1.6.1 immediate function definitions1.6.2 delayed function definitions1.6.3 functions that remember their results1.6.4 functions with conditions on their arguments1.6.5 functions with optional arguments1.7 rules and replacements1.7.1 immediate and delayed rules1.7.2 repeated rule replacement1.8 many ways to define the factorial function1.8.1 exercises1.9 vectors, matrices, tensors1.9.1 vectors1.9.2 matrices1.9.3 sparse vectors and matrices1.9.4 matrix diagonalization1.9.5 tensor operations1.9.6 exercises1.10 complex numbers1.11 units2 quantum mechanics 2.1 basis sets and representations 2.1.1 incomplete basis sets 2.1.2 exercises 2.2 time-independent Schroedinger equation 2.2.1 diagonalization 2.2.2 exercises 2.3 time-dependent Schroedinger equation 2.3.1 time-independent basis 2.3.2 time-dependent basis: interaction picture 2.3.3 special case: I (t), (tt)l = 0 (t, tt) H H2.3.4 special case: time-independent Hamiltonian 2.3.5 exercises 2.4 basis construction 2.4.1 description of a single degree of freedom 2.4.2 description of coupled degrees of freedom 2.4.3 reduced density matrices 2.4.4 exercises 3 spin systems 3.1 quantum-mechanical spin and angular momentum operators 3.1.1 exercises 3.2 spin-1/2 electron in a dc magnetic field 3.2.1 time-independent Schroedinger equation 3.2.2 exercises 3.3 coupled spin systems: 87Rb hyperfine structure 3.3.1 eigenstate analysis 3.3.2 "magic" magnetic field 3.3.3 coupling to an oscillating magnetic field 3.3.4 exercises 3.4 coupled spin systems: Ising model in a transverse field 3.4.1 basis set 3.4.2 asymptotic ground states 3.4.3 Hamiltonian diagonalization 3.4.4 analysis of the ground state 3.4.5 exercises 4 real-space systems 4.1 one particle in one dimension 4.1.1 computational basis functions 4.1.2 example: square well with bottom step 4.1.3 the Wigner quasi-probability distribution 4.1.4 1D dynamics in the square well 4.1.5 1D dynamics in a time-dependent potential 4.2 non-linear Schroedinger equation 4.2.1 ground state of the non-linear Schroedinger equation 4.3 several particles in one dimension: interactions 4.3.1 two identical particles in one dimension with contact interaction 4.3.2 two particles in one dimension with arbitrary interaction 4.4 one particle in several dimensions 4.4.1 exercises 5 combining space and spin 5.1 one particle in 1D with spin 5.1.1 separable Hamiltonian 5.1.2 non-separable Hamiltonian 5.1.3 exercises5.2 one particle in 2D with spin: Rashba coupling5.2.1 exercises 5.3 phase-space dynamics in the Jaynes-Cummings model exercises

Koszyk

Książek w koszyku: 0 szt.

Wartość zakupów: 0,00 zł

ebooks
covid

Kontakt

Gambit
Centrum Oprogramowania
i Szkoleń Sp. z o.o.

Al. Pokoju 29b/22-24

31-564 Kraków


Siedziba Księgarni

ul. Kordylewskiego 1

31-542 Kraków

+48 12 410 5991

+48 12 410 5987

+48 12 410 5989

Zobacz na mapie google

Wyślij e-mail

Subskrypcje

Administratorem danych osobowych jest firma Gambit COiS Sp. z o.o. Na podany adres będzie wysyłany wyłącznie biuletyn informacyjny.

Autoryzacja płatności

PayU

Informacje na temat autoryzacji płatności poprzez PayU.

PayU banki

© Copyright 2012: GAMBIT COiS Sp. z o.o. Wszelkie prawa zastrzeżone.

Projekt i wykonanie: Alchemia Studio Reklamy