Jeżeli nie znalazłeś poszukiwanej książki, skontaktuj się z nami wypełniając formularz kontaktowy.

Ta strona używa plików cookies, by ułatwić korzystanie z serwisu. Mogą Państwo określić warunki przechowywania lub dostępu do plików cookies w swojej przeglądarce zgodnie z polityką prywatności.

Wydawcy

Literatura do programów

Informacje szczegółowe o książce

Active Plasmonics and Tuneable Plasmonic Metamaterials - ISBN 9781118092088

Active Plasmonics and Tuneable Plasmonic Metamaterials

ISBN 9781118092088

Autor: Anatoly V. Zayats, Stefan Maier

Wydawca: Wiley

Dostępność: 3-6 tygodni

Cena: 619,50 zł

Przed złożeniem zamówienia prosimy o kontakt mailowy celem potwierdzenia ceny.


ISBN13:      

9781118092088

ISBN10:      

1118092082

Autor:      

Anatoly V. Zayats, Stefan Maier

Oprawa:      

Hardback

Rok Wydania:      

2013-08-23

Ilość stron:      

336

Wymiary:      

247x158

Tematy:      

PH

Provides an overview of the current and future states ofplasmonics and plasmonic–based metamaterials, with an emphasis onactive functionalities

Plasmonics refers to the science and technology of manipulatingelectromagnetic signals by coherent coupling of photons to freeelectron oscillations at the interface between a conductor and adielectric. Over the last ten years, this research field hasemerged as an extremely promising technology with several fields ofapplication such as information technology, energy, high–densitydata storage, life sciences, and security.

Active Plasmonics and Tuneable Plasmonic Metamaterialsprovides a collection of authoritative reviews in plasmonics fromthe most well–respected scientists in this fast–growing andtechnologically important field. It covers active plasmonicsfunctionalities in waveguide–based systems as well as metamaterialswith an emphasis on electric–field and optically–driven integratedplasmonic sources, nonlinear plasmonic elements, tuneable plasmonicmetamaterials, and plasmonic nanolasers.

Chapter coverage includes:

Spaser, Plasmonic Amplification, and Loss Compensation Nonlinear Effects in Plasmonic Systems Plasmonic Nanorod Metamaterials as a Platform for ActiveNanophotonics Transformation Optics for Plasmonics Loss Compensation and Amplification of Surface PlasmonPolaritons Controlling Light Propagation with Interfacial PhaseDiscontinuities Integrated Plasmonic Detectors Terahertz Plasmonic Surfaces for Sensing Subwavelength Imaging by Extremely Anisotropic Media Active and Tuneable Metallic Nanoslit Lenses

Ideal for researchers and students in the fields of plasmonics,photonics, and nanotechnology, this book describes in depth theroad already traveled in plasmonics and the future possibilities ofthis rich and vital technology.



Preface xiii

Contributors xvii

1 Spaser, Plasmonic Amplification, and Loss Compensation1
Mark I. Stockman

1.1 Introduction to Spasers and Spasing 1

1.2 Spaser Fundamentals 2

1.2.1 Brief Overview of the Latest Progress in Spasers 5

1.3 Quantum Theory of Spaser 7

1.3.1 Surface Plasmon Eigenmodes and Their Quantization 7

1.3.2 Quantum Density Matrix Equations (Optical Bloch Equations)for Spaser 9

1.3.3 Equations for CW Regime 11

1.3.4 Spaser operation in CW Mode 15

1.3.5 Spaser as Ultrafast Quantum Nanoamplifier 17

1.3.6 Monostable Spaser as a Nanoamplifier in Transient Regime18

1.4 Compensation of Loss by Gain and Spasing 22

1.4.1 Introduction to Loss Compensation by Gain 22

1.4.2 Permittivity of Nanoplasmonic Metamaterial 22

1.4.3 Plasmonic Eigenmodes and Effective Resonant Permittivityof Metamaterials 24

1.4.4 Conditions of Loss Compensation by Gain and Spasing 25

1.4.5 Discussion of Spasing and Loss Compensation by Gain 27

1.4.6 Discussion of Published Research on Spasing and LossCompensations 29

2 Nonlinear Effects in Plasmonic Systems 41
Pavel Ginzburg and Meir Orenstein

2.1 Introduction 41

2.2 Metallic Nonlinearities Basic Effects and Models43

2.2.1 Local Nonlinearity Transients by Carrier Heating43

2.2.2 Plasma Nonlinearity The Ponderomotive Force 45

2.2.3 Parametric Process in Metals 46

2.2.4 Metal Damage and Ablation 48

2.3 Nonlinear Propagation of Surface Plasmon Polaritons 49

2.3.1 Nonlinear SPP Modes 50

2.3.2 Plasmon Solitons 50

2.3.3 Nonlinear Plasmonic Waveguide Couplers 54

2.4 Localized Surface Plasmon Nonlinearity 55

2.4.1 Cavities and Nonlinear Interactions Enhancement 56

2.4.2 Enhancement of Nonlinear Vacuum Effects 58

2.4.3 High Harmonic Generation 60

2.4.4 Localized Field Enhancement Limitations 60

2.5 Summary 62

3 Plasmonic Nanorod Metamaterials as a Platform for ActiveNanophotonics 69
Gregory A. Wurtz, Wayne Dickson, Anatoly V. Zayats, AntonyMurphy, and Robert J. Pollard

3.1 Introduction 69

3.2 Nanorod Metamaterial Geometry 71

3.3 Optical Properties 72

3.3.1 Microscopic Description of the MetamaterialElectromagnetic Modes 72

3.3.2 Effective Medium Theory of the Nanorod Metamaterial 76

3.3.3 Epsilon–Near–Zero Metamaterials and Spatial DispersionEffects 79

3.3.4 Guided Modes in the Anisotropic Metamaterial Slab 82

3.4 Nonlinear Effects in Nanorod Metamaterials 82

3.4.1 Nanorod Metamaterial Hybridized with Nonlinear Dielectric84

3.4.2 Intrinsic Metal Nonlinearity of Nanorod Metamaterials85

3.5 Molecular Plasmonics in Metamaterials 89

3.6 Electro–Optical Effects in Plasmonic Nanorod MetamaterialHybridized with Liquid Crystals 97

3.7 Conclusion 98

4 Transformation Optics for Plasmonics 105
Alexandre Aubry and John B. Pendry

4.1 Introduction 105

4.2 The Conformal Transformation Approach 108

4.2.1 A Set of Canonic Plasmonic Structures 109

4.2.2 Perfect Singular Structures 110

4.2.3 Singular Plasmonic Structures 114

4.2.3.1 Conformal Mapping of Singular Structures 114

4.2.3.2 Conformal Mapping of Blunt–Ended Singular Structures118

4.2.4 Resonant Plasmonic Structures 119

4.3 Broadband Light Harvesting and Nanofocusing 121

4.3.1 Broadband Light Absorption 121

4.3.2 Balance between Energy Accumulation and Dissipation 123

4.3.3 Extension to 3D 125

4.3.4 Conclusion 126

4.4 Surface Plasmons and Singularities 127

4.4.1 Control of the Bandwidth with the Vertex Angle 127

4.4.2 Effect of the Bluntness 129

4.5 Plasmonic Hybridization Revisited with Transformation Optics130

4.5.1 A Resonant Behavior 131

4.5.2 Nanofocusing Properties 132

4.6 Beyond the Quasi–Static Approximation 133

4.6.1 Conformal Transformation Picture 134

4.6.2 Radiative Losses 135

4.6.3 Fluorescence Enhancement 137

4.6.3.1 Fluorescence Enhancement in the Near–Field ofNanoantenna 138

4.6.3.2 The CT Approach 139

4.7 Nonlocal effects 142

4.7.1 Conformal Mapping of Nonlocality 142

4.7.2 Toward the Physics of Local Dimers 143

4.8 Summary and Outlook 145

5 Loss Compensation and Amplification of Surface PlasmonPolaritons 153
Pierre Berini

5.1 Introduction 153

5.2 Surface Plasmon Waveguides 154

5.2.1 Unidimensional Structures 154

5.2.2 Bidimensional Structures 156

5.2.3 Confinement–Attenuation Trade–Off 156

5.2.4 Optical Processes Involving SPPs 157

5.3 Single Interface 157

5.3.1 Theoretical 157

5.3.2 Experimental 158

5.4 Symmetric Metal Films 160

5.4.1 Gratings 160

5.4.2 Theoretical 160

5.4.3 Experimental 161

5.5 Metal Clads 163

5.5.1 Theoretical 164

5.5.2 Experimental 164

5.6 Other Structures 164

5.6.1 Dielectric–Loaded SPP Waveguides 164

5.6.2 Hybrid SPP Waveguide 165

5.6.3 Nanostructures 166

5.7 Conclusions 166

6 Controlling Light Propagation with Interfacial PhaseDiscontinuities 171
Nanfang Yu, Mikhail A. Kats, Patrice Genevet, Francesco Aieta,Romain Blanchard, Guillaume Aoust, Zeno Gaburro, andFederico Capasso

6.1 Phase Response of Optical Antennas 172

6.1.1 Introduction 172

6.1.2 Single Oscillator Model for Linear Optical Antennas174

6.1.3 Two–Oscillator Model for 2D Structures Supporting TwoOrthogonal Plasmonic Modes 176

6.1.4 Analytical Models for V–Shaped Optical Antennas 179

6.1.5 Optical Properties of V–Shaped Antennas: Experiments andSimulations 183

6.2 Applications of Phased Optical Antenna Arrays 186

6.2.1 Generalized Laws of Reflection and Refraction:Meta–Interfaces with Phase Discontinuities 186

6.2.2 Out–of–Plane Reflection and Refraction of Light byMeta–Interfaces 192

6.2.3 Giant and Tuneable Optical Birefringence 197

6.2.4 Vortex Beams Created by Meta–Interfaces 200

7 Integrated Plasmonic Detectors 219
Pieter Neutens and Paul Van Dorpe

7.1 Introduction 219

7.2 Electrical Detection of Surface Plasmons 221

7.2.1 Plasmon Detection with Tunnel Junctions 221

7.2.2 Plasmon–Enhanced Solar Cells 222

7.2.3 Plasmon–Enhanced Photodetectors 225

7.2.4 Waveguide–Integrated Surface Plasmon Polariton Detectors232

7.3 Outlook 236

8 Terahertz Plasmonic Surfaces for Sensing 243
Stephen M. Hanham and Stefan A. Maier

8.1 The Terahertz Region for Sensing 244

8.2 THz Plasmonics 244

8.3 SPPs on Semiconductor Surfaces 245

8.3.1 Active Control of Semiconductor Plasmonics 247

8.4 SSPP on Structured Metal Surfaces 247

8.5 THz Plasmonic Antennas 249

8.6 Extraordinary Transmission 253

8.7 THz Plasmons on Graphene 255

9 Subwavelength Imaging by Extremely Anisotropic Media261
Pavel A. Belov

9.1 Introduction to Canalization Regime of Subwavelength Imaging261

9.2 Wire Medium Lens at the Microwave Frequencies 264

9.3 Magnifying and Demagnifying Lenses with Super–Resolution269

9.4 Imaging at the Terahertz and Infrared Frequencies 272

9.5 Nanolenses Formed by Nanorod Arrays for the VisibleFrequency Range 276

9.6 Superlenses and Hyperlenses Formed by MultilayeredMetal Dielectric Nanostructures 279

10 Active and Tuneable Metallic Nanoslit Lenses 289
Satoshi Ishii, Xingjie Ni, Vladimir P. Drachev, Mark D.Thoreson, Vladimir M. Shalaev, and Alexander V. Kildishev

10.1 Introduction 289

10.2 Polarization–Selective Gold Nanoslit Lenses 290

10.2.1 Design Concept of Gold Nanoslit Lenses 291

10.2.2 Experimental Demonstration of Gold Nanoslit Lenses292

10.3 Metallic Nanoslit Lenses with Focal–Intensity Tuneability andFocal Length Shifting 295

10.3.1 Liquid Crystal–Controlled Nanoslit Lenses 295

10.3.2 Nonlinear Materials for Controlling Nanoslit Lenses300

10.4 Lamellar Structures with Hyperbolic Dispersion EnableSubwavelength Focusing with Metallic Nanoslits 301

10.4.1 Active Lamellar Structures with Hyperbolic Dispersion302

10.4.2 Subwavelength Focusing with Active Lamellar Structures307

10.4.3 Experimental Demonstration of Subwavelength Diffraction308

10.5 Summary 313

Acknowledgments 313

References 313



ANATOLY V. ZAYATS, PhD, is Professor of ExperimentalPhysics and the Head of the Experimental Biophysics andNanotechnology Group at King′s College London. He also leads the UKEPSRC research program on active plasmonics. He is a Fellow of theInstitute of Physics, the Optical Society of America, and SPIE.

STEFAN MAIER, PhD, is the Co–Director of the Centre forPlasmonics and Metamaterials at Imperial College London. He was therecipient of the 2010 Sackler Prize in the Physical Sciences andthe 2010 Paterson Medal of the Institute of Physics. A Fellow ofthe OSA and Institute of Physics, Dr. Maier has published over 130journal articles in the area of nanoplasmonics, and is a frequentinvited speaker at international conferences.

Koszyk

Książek w koszyku: 0 szt.

Wartość zakupów: 0,00 zł

ebooks
covid

Kontakt

Gambit
Centrum Oprogramowania
i Szkoleń Sp. z o.o.

Al. Pokoju 29b/22-24

31-564 Kraków


Siedziba Księgarni

ul. Kordylewskiego 1

31-542 Kraków

+48 12 410 5991

+48 12 410 5987

+48 12 410 5989

Zobacz na mapie google

Wyślij e-mail

Subskrypcje

Administratorem danych osobowych jest firma Gambit COiS Sp. z o.o. Na podany adres będzie wysyłany wyłącznie biuletyn informacyjny.

Autoryzacja płatności

PayU

Informacje na temat autoryzacji płatności poprzez PayU.

PayU banki

© Copyright 2012: GAMBIT COiS Sp. z o.o. Wszelkie prawa zastrzeżone.

Projekt i wykonanie: Alchemia Studio Reklamy