Autor: Adrian Bejan; J.A. Jones
Wydawca: CRC Press
Dostępność: 3-6 tygodni
Cena: 1 140,30 zł
Przed złożeniem zamówienia prosimy o kontakt mailowy celem potwierdzenia ceny.
ISBN13: |
9780849396519 |
ISBN10: |
0849396514 |
Autor: |
Adrian Bejan; J.A. Jones |
Oprawa: |
Hardback |
Rok Wydania: |
1995-10-20 |
Ilość stron: |
400 |
Tematy: |
Engineering thermodynamics |
This book presents the diverse and rapidly expanding field of Entropy Generation Minimization (EGM), the method of thermodynamic optimization of real devices. The underlying principles of the EGM method - also referred to as "thermodynamic optimization," "thermodynamic design," and "finite time thermodynamics" - are thoroughly discussed, and the method's applications to real devices are clearly illustrated. The EGM field has experienced tremendous growth during the 1980s and 1990s. This book places EGM's growth in perspective by reviewing both sides of the field - engineering and physics. Special emphasis is given to chronology and to the relationship between the more recent work and the pioneering work that outlined the method and the field. Entropy Generation Minimization combines the fundamental principles of thermodynamics, heat transfer, and fluid mechanics. EGM applies these principles to the modeling and optimization of real systems and processes that are characterized by finite size and finite time constraints, and are limited by heat and mass transfer and fluid flow irreversibilities. Entropy Generation Minimization provides a straightforward presentation of the principles of the EGM method, and features examples that elucidate concepts and identify recent EGM advances in engineering and physics. Modern advances include the optimization of storage by melting and solidification; heat exchanger design; power from hot-dry-rock deposits; the on & off operation of defrosting refrigerators and power plants with fouled heat exchangers; the production of ice and other solids; the maximization of power output in simple power plant models with heat transfer irreversibilities; the minimization of refrigerator power input in simple models; and the optimal collection and use of solar energy.
List of Symbols Thermodynamics Concepts and Laws Definitions Closed Systems Open Systems The Momentum Theorem Useful Steps in Problem Solving The Temperature-Energy Interaction Diagram, and the Entropy Interaction-Energy Interaction Diagram Problems Entropy Generation and Exergy Destruction The Gouy-Stodola Theorem Systems Communicating with More than One Heat Reservoir Adiabatic Systems Exergy Analysis of Steady Flow Processes Exergy Analysis of Non-Flow Processes Characteristic Features of Irreversible Systems and Processes Problems Entropy Generation in Fluid Flow Relationship between Entropy Generation and Viscous Dissipation Laminar Flow Turbulent Flow The Transition Buckling Theory of Turbulent Flow Entropy Generation in "Isothermal" Turbulent Flow The Bernoulli Equation Entropy Generation in Heat Transfer The Local Rate of Entropy Generation in Convective Heat Transfer Fluid Friction vs. Heat Transfer Irreversibility Internal Flows External Flows Conduction Heat Transfer Convective Mass Transfer General Heat Exchanger Passage Heat Transfer Augmentation Techniques Problems Heat Exchangers Counterflow Heat Exchangers Heat Exchangers with Negligible Pressure Drop Irreversibility The Three-Part Structure of Heat Exchanger Irreversibility Two-Phase-Flow Heat Exchangers Other Heat Exchanger Entropy Generation Studies Distribution of Heat Exchanger Area on the Absolute Temperature Scale Distribution of Heat Transfer Area in Counterflow Heat Exchangers Problems Insulation Systems Power Plants and Refrigeration Plants as Insulation Systems The Generation of Entropy in an Insulation with Fixed Geometry Optimum Continuous Cooling Regime Counterflow Heat Exchangers as One-Dimensional Insulations Parallel Insulations Intermediate Cooling or Heating of Insulation Systems for Power and Refrigeration Plants Problems Storage Systems Sensible Heat Storage Optimum Heating and Cooling Processes Subject to Time Constraint Hot Storage vs. Cold Storage Latent Heat Storage Power Generation Model with Bypass Heat Leak and Two Finite-Size Heat Exchangers Power Plant Viewed as an Insulation Between Heat Source and Ambient Combined-Cycle Power Plant Optimal Combustion Chamber Temperature Other Power Plant Optimization Studies Why Maximum Power Means Minimum Entropy Generation Rate Maximum Power from Fluid Flow Problems Solar-Thermal Power Generation Models with Collector Heat Loss to the Ambient Collector-Ambient Heat Loss and Collector-Engine Heat Exchanger Collector-Ambient Heat Loss and Engine-Ambient Heat Exchanger Storage by Melting Extraterrestrial Solar Power Plant Nonisothermal Collectors Time-Varying Conditions Other Areas of Solar Power Conversion Study Problems Refrigeration Refrigeration Plant Model with Heat Transfer Irreversibilities Model with Heat Leak in Parallel with Reversible Compartment Model with Cold End Heat Exchanger and Room Temperature Heat Exchanger Minimization of the Heat-Leak Entropy Generation Problems Time-Dependent Operation Defrosting Refrigerators Cleaning the Heat Exchanger of a Power Plant Power Plants Driven by Heating from a Bed of Hot Dry Rock Maximum Rate of Ice Production Problems Appendices Local Entropy Generation Rate Variational Calculus Author Index Subject Index
Książek w koszyku: 0 szt.
Wartość zakupów: 0,00 zł
Gambit
Centrum Oprogramowania
i Szkoleń Sp. z o.o.
Al. Pokoju 29b/22-24
31-564 Kraków
Siedziba Księgarni
ul. Kordylewskiego 1
31-542 Kraków
+48 12 410 5991
+48 12 410 5987
+48 12 410 5989
Administratorem danych osobowych jest firma Gambit COiS Sp. z o.o. Na podany adres będzie wysyłany wyłącznie biuletyn informacyjny.
© Copyright 2012: GAMBIT COiS Sp. z o.o. Wszelkie prawa zastrzeżone.
Projekt i wykonanie: Alchemia Studio Reklamy