Jeżeli nie znalazłeś poszukiwanej książki, skontaktuj się z nami wypełniając formularz kontaktowy.

Ta strona używa plików cookies, by ułatwić korzystanie z serwisu. Mogą Państwo określić warunki przechowywania lub dostępu do plików cookies w swojej przeglądarce zgodnie z polityką prywatności.

Wydawcy

Literatura do programów

Informacje szczegółowe o książce

High Performance Switches and Routers - ISBN 9780470053676

High Performance Switches and Routers

ISBN 9780470053676

Autor: H. Jonathan Chao, Bin Liu

Wydawca: Wiley

Dostępność: 3-6 tygodni

Cena: 871,50 zł

Przed złożeniem zamówienia prosimy o kontakt mailowy celem potwierdzenia ceny.


ISBN13:      

9780470053676

ISBN10:      

0470053674

Autor:      

H. Jonathan Chao, Bin Liu

Oprawa:      

Hardback

Rok Wydania:      

2007-05-04

Ilość stron:      

640

Wymiary:      

264x185

Tematy:      

TJ

Learn to Design High Performance Switches and Routers for Today′s Ever Growing Internet Traffic
As Internet traffic continues to grow, and demands for quality of service become more stringent, researchers and engineers can turn to High Performance Switches and Routers for tested and proven solutions. This text presents the latest developments in high performance switches and routers, coupled with step–by–step design guidance.
More than 550 figures and examples enable readers to grasp all the theories and algorithms used for design and implementation.
The authors begin with an examination of the architecture of the Internet, as it is now and as it will be in the future. Then, they examine router architectures and their building blocks, and the challenging issues involved in designing high performance, high–speed routers. Examples of commercial high–end routers are provided.
Next, the authors discuss the main functions of the line cards of a core router, including route lookup, packet classification, and traffic management for quality of service control. The bulk of the text is then dedicated to packet switching designs. Coverage includes the various available architectures, algorithms, and technologies. Among the topics covered, readers will find detailed discussions of the latest innovations in electrical and optical packet switching. The final chapter discusses state–of–the–science commercial chipsets used to build routers. Readers learn their architecture and functions, using the theories and conceptual designs presented in the previous chapters as a foundation.
Although implementation techniques for switches and routers will continue to evolve, the fundamental theories and principles of this text will serve readers for years to come. In addition to bringing researchers and engineers up to date with the latest designs, this text, with its focus on illustrations and examples, is an ideal graduate–level textbook.

Spis treści:
PREFACE.
ACKNOWLEDGMENTS.
1 INTRODUCTION.
1.1 Architecture of the Internet: Present and Future.
1.2 Router Architectures.
1.3 Commercial Core Router Examples.
1.4 Design of Core Routers.
1.5 IP Network Management.
1.6 Outline of the Book.
2 IP ADDRESS LOOKUP.
2.1 Overview.
2.2 Trie–Based Algorithms.
2.3 Hardware–Based Schemes.
2.4 IPv6 Lookup.
2.5 Comparison.
3 PACKET CLASSIFICATION.
3.1 Introduction.
3.2 Trie–Based Classifications.
3.3 Geometric Algorithms.
3.4 Heuristic Algorithms.
3.5 TCAM–Based Algorithms.
4 TRAFFIC MANAGEMENT.
4.1 Quality of Service.
4.2 Integrated Services.
4.3 Differentiated Services.
4.4 Traffic Policing and Shaping.
4.5 Packet Scheduling.
4.6 Buffer Management.
5 BASICS OF PACKET SWITCHING.
5.1 Fundamental Switching Concept.
5.2 Switch Fabric Classification.
5.3 Buffering Strategy in Switching Fabrics.
5.4 Multiplane Switching and Multistage Switching.
5.5 Performance of Basic Switches.
6 SHARED–MEMORY SWITCHES.
6.1 Linked List Approach.
6.2 Content Addressable Memory Approach.
6.3 Space–Time–Space Approach.
6.4 Scaling the Shared–Memory Switches.
6.5 Multicast Shared–Memory Switches.
7 INPUT–BUFFERED SWITCHES.
7.1 Scheduling in VOQ–Based Switches.
7.2 Maximum Matching.
7.3 Maximal Matching.
7.4 Randomized Matching Algorithms.
7.5 Frame–based Matching.
7.6 Stable Matching with Speedup.
8 BANYAN–BASED SWITCHES.
8.1 Banyan Networks.
8.2 Batcher–Sorting Network.
8.3 Output Contention Resolution Algorithms.
8.4 The Sunshine Switch.
8.5 Deflection Routing.
8.6 Multicast Copy Networks.
9 KNOCKOUT–BASED SWITCHES.
9.1 Single–Stage Knockout Switch.
9.2 Channel Grouping Principle.
9.3 Two–Stage Multicast Output–Buffered ATM Switch (MOBAS).
9.4 Appendix.
10 THE ABACUS SWITCH.
10.1 Basic Architecture.
10.2 Multicast Contention Resolution Algorithm.
10.3 Implementation of Input Port Controller.
10.4 Performance.
10.5 ATM Routing and Concentration (ARC) Chip.
10.6 Enhanced Abacus Switch.
10.7 Abacus Switch for Packet Switching.
11 CROSSPOINT BUFFERED SWITCHES.
11.1 Combined Input and Crosspoint Buffered Switches.
11.2 Combined Input and Crosspoint Buffered Switches with VOQ.
11.3 OCF—OCF: Oldest Cell First Scheduling.
11.4 LQF—RR: Longest Queue First and Round–Robin Scheduling in CIXB–1.
11.5 MCBF: Most Critical Buffer First Scheduling.
12 CLOS–NETWORK SWITCHES.
12.1 Routing Property of Clos Network Switches.
12.2 Looping Algorithm.
12.3 m–Matching Algorithm.
12.4 Euler Partition Algorithm.
12.5 Karol’s Algorithm.
12.6 Frame–Based Matching Algorithm for Clos Network (f–MAC).
12.7 Concurrent Matching Algorithm for Clos Network (c–MAC).
12.8 Dual–Level Matching Algorithm for Clos Network (d–MAC).
12.9 The ATLANTA Switch.
12.10 Concurrent Round–Robin Dispatching (CRRD) Scheme.
12.11 The Path Switch.
13 MULTI–PLANE MULTI–STAGE BUFFERED SWITCH.
13.1 TrueWay Switch Architecture.
13.2 Packet Scheduling.
13.3 Stage–To–Stage Flow Control.
13.4 Port–To–Port Flow Control.
13.5 Performance Analysis.
13.6 Prototype.
14 LOAD–BALANCED SWITCHES.
14.1 Birkhoff–Von Neumann Switch.
14.2 Load–Balanced Birkhoff–von Neumann Switches.
14.3 Load–Balanced Birkhoff–von Neumann SwitchesWith FIFO Service.
15 OPTICAL PACKET SWITCHES.
15.1 Opto–Electronic Packet Switches.
15.2 Optoelectronic Packet Switch C ase Study I.
15.3 Optoelectronic Packet Switch Case Study II.
15.4 All Optical Packet Switches.
15.5 Optical Packet Switch with Shared Fiber Delay Lines Single–stage Case.
15.6 All Optical Packet Switch with Shared Fiber Delay Lines – Three Stage Case.
16 HIGH–SPEED ROUTER CHIP SET.
16.1 Network Processors (NPs).
16.2 Co–Processors for Packet Classification.
16.3 Traffic Management Chips.
16.4 Switching Fabric Chips.
INDEX.

Nota biograficzna:
H. Jonathan Chao, PhD, is Department Head and Professor of Electrical and Computer Engineering at Polytechnic University, Brooklyn, New York. He holds more than twenty–six patents and is an IEEE Fellow. His research focuses on terabit switches and routers, network security, quality of service control, and optical switching.
Bin Liu, PhD, is Professor in the Department of Computer Science at Tsinghua University, Beijing, China. His research interests include high performance switches and routers, network security, network processors, and traffic engineering. Dr. Liu holds more than ten patents in China.

Okładka tylna:
Learn to Design High Performance Switches and Routers for Today′s Ever Growing Internet Traffic
As Internet traffic continues to grow, and demands for quality of service become more stringent, researchers and engineers can turn to High Performance Switches and Routers for tested and proven solutions. This text presents the latest developments in high performance switches and routers, coupled with step–by–step design guidance.
More than 550 figures and examples enable readers to grasp all the theories and algorithms used for design and implementation.
The authors begin with an examination of the architecture of the Internet, as it is now and as it will be in the future. Then, they examine router architectures and their building blocks, and the cha

Koszyk

Książek w koszyku: 0 szt.

Wartość zakupów: 0,00 zł

ebooks
covid

Kontakt

Gambit
Centrum Oprogramowania
i Szkoleń Sp. z o.o.

Al. Pokoju 29b/22-24

31-564 Kraków


Siedziba Księgarni

ul. Kordylewskiego 1

31-542 Kraków

+48 12 410 5991

+48 12 410 5987

+48 12 410 5989

Zobacz na mapie google

Wyślij e-mail

Subskrypcje

Administratorem danych osobowych jest firma Gambit COiS Sp. z o.o. Na podany adres będzie wysyłany wyłącznie biuletyn informacyjny.

Autoryzacja płatności

PayU

Informacje na temat autoryzacji płatności poprzez PayU.

PayU banki

© Copyright 2012: GAMBIT COiS Sp. z o.o. Wszelkie prawa zastrzeżone.

Projekt i wykonanie: Alchemia Studio Reklamy