Jeżeli nie znalazłeś poszukiwanej książki, skontaktuj się z nami wypełniając formularz kontaktowy.

Ta strona używa plików cookies, by ułatwić korzystanie z serwisu. Mogą Państwo określić warunki przechowywania lub dostępu do plików cookies w swojej przeglądarce zgodnie z polityką prywatności.

Wydawcy

Literatura do programów

Informacje szczegółowe o książce

The Quantum in Chemistry: An Experimentalists View - ISBN 9780470013182

The Quantum in Chemistry: An Experimentalists View

ISBN 9780470013182

Autor: Roger Grinter

Wydawca: Wiley

Dostępność: 3-6 tygodni

Cena: 432,60 zł

Przed złożeniem zamówienia prosimy o kontakt mailowy celem potwierdzenia ceny.


ISBN13:      

9780470013182

ISBN10:      

0470013184

Autor:      

Roger Grinter

Oprawa:      

Paperback

Rok Wydania:      

2005-10-07

Ilość stron:      

474

Wymiary:      

245x188

Tematy:      

PN

This book explores the way in which quantum theory has become central to our understanding of the behaviour of atoms and molecules and the way in which this underlies so many of the experimental measurements we make, how we interpret those experiments and the language which we use to describe our results. It attempts to provide an account of the quantum theory and some of its applications to chemistry. The subject matter develops as follows:Chapter 1 considers the place of theory in science, emphasising in particular the significance of hypotheses, postulates and laws;Chapter 2 gives an account, in approximately historical sequence, of the development of the quantum theory paying particular attention to the emerging experimental data and the new theoretical concepts developed for their interpretation;Chapters 3 and 4 describe some fundamental details of the theory with explanations and simple, chemically–relevant examples. Emphasis is laid on what we can and cannot know and comparisons with classical, macroscopic mechanics are made wherever possible;The remaining chapters (5–12) describe the quantum mechanics involved in the important techniques (especially IR, NMR and electronic spectroscopy) and theoretical concepts (the chemical bond, molecular magnetism) that underlie our modern views of molecular structure and function. Here also calculations relevant to chemical problems are described in detail;Many aspects of the mathematics of quantum theory are placed in the 10 appendices which also provide a valuable source of reference material on units, conversion factors and mathematical functions useful in quantum–mechanical calculations;Most chapters include boxed text that expands on and explains the material in the main text and problems are presented at the end of each chapter.
This book is for researchers working on experimental aspects of chemistry and the allied sciences at all levels, from advanced undergra duates to experienced research project leaders, wishing to improve, by self–study or in small research–orientated groups, their understanding of the ways in which quantum mechanics can be applied to their problems. The book also aims to provide useful background material for teachers of quantum mechanics courses and their students.

Spis treści:
Preface.
Chapter 1: The Role of Theory in the Physical Sciences.
1.0 Introduction.
1.1 What is the role of theory in science?
1.2 The gas laws of Boyle and Gay–Lussac.
1.3 An absolute zero of temperature.
1.4 The gas equation of Van der Waals.
1.5 Physical laws.
1.6 Laws, postulates, hypotheses, etc.
1.7 Theory at the end of the 19th century.
1.8 Bibliography and further reading.
Chapter 2: From Classical to Quantum Mechanics.
2.0 Introduction.
2.1 The motion of the planets: Tycho Brahe and Kepler.
2.2 Newton, Lagrange and Hamilton.
2.3 The power of classical mechanics.
2.4 The failure of classical physics.
2.5 The black–body radiator and Planck’s quantum hypothesis.
2.6 The photoelectric effect.
2.7 The emission spectra of atoms.
2.8 de Broglie’s proposal.
2.9 The Schrödinger equation.
2.10 Bibliography and further reading.
Chapter 3: The Application of Quantum Mechanics.
3.0 Introduction.
3.1 Observables, operators, eigenfunctions and eigenvalues.
3.2 The Schrödinger method.
3.3 An electron on a ring.
3.4 Hückel’s (4N + 2) rule: aromaticity.
3.5 Normalisation and orthogonality.
3.6 An electron in a linear box.
3.7 The linear and angular momenta of electrons confined within a one–dimensional box or on a ring.
3.8 The eigenfunctions of different operators.
3.9 Eigenfunctions, eigenvalues and experimental measurements.
3.10 More about measurement: the Heisenberg uncertainty principle.
3.11 The commutation of operators.
3.12 Combinations of eigenfunctions and the superposition of states.
3.13 Operators and their formulation.
3.14 Summary.
3.15 Bibliography and further reading.
Chapter 4: Angular Momentum.
4.0 Introduction.
4.1 Angular momentum in classical mechanics.
4.2 The conservation of angular momentum.
4.3 Angular momentum as a vector quantity.
4.4 Orbital angular momentum in quantum mechanics.
4.5 Spin angular momentum.
4.6 Total angular momentum.
4.7 Angular momentum operators and eigenfunctions.
4.8 Notation.
4.9 Some examples.
4.10 Bibliography and further reading.
Chapter 5: The Structure and Spectroscopy of the Atom.
5.0 Introduction.
5.1 The eigenvalues of the hydrogen atom.
5.2 The wave functions of the hydrogen atom.
5.3 Polar diagrams of the angular functions.
5.4 The complete orbital wave functions.
5.5 Other one–electron atoms.
5.6 Electron spin.
5.7 Atoms and ions with more than one electron.
5.8 The electronic states of the atom.
5.9 Spin–orbit coupling.
5.10 Selection rules in atomic spectroscopy.
5.11 The Zeeman effect.
5.12 Bibliography and further reading.
Chapter 6: The Covalent Chemical Bond.
6.0 Introduction.
6.1 The binding energy of the hydrogen molecule.
6.2 The Hamiltonian operator for the hydrogen molecule.
6.3 The Born 211;Oppenheimer approximation.
6.4 Heitler and London: The valence bond (VB) model.
6.5 Hund and Mulliken: the molecular orbital (MO) model.
6.6 Improving the wave functions.
6.7 Unification: Ionic structures and configuration interaction.
6.8 Electron correlation.
6.9 Bonding and antibonding Mos.
6.10 Why is there no He–He Bond?
6.11 Atomic orbital overlap.
6.12 The Homonuclear diatomic molecules from lithium to fluorine.
6.13 Heteronuclear diatomic molecules.
6.14 Charge distribution.
6.15 Hybridisation and resonance.
6.16 Resonance and the valence bond theory.
6.17 Molecular geometry.
6.18 Computational developments.
6.19 Bibliography and further reading.
Chapter 7: Bonding, Spectroscopy and Magnetism in Transition–Metal Complexes.
7.0 Introduction.
7.1 Historical development.
7.2 The crystal field theory.
7.3 The electronic energy levels of transition–metal complexes.
7.4 The electronic spectroscopy of transition–metal complexes.
7.5 Pairing energies; low–spin and high–spin complexes.
7.6 The magnetism of transition–metal complexes.
7.7 Covalency and the ligand field theory.
7.8 Bibliography and further reading.
Chapter 8: Spectroscopy.
8.0 The interaction of radiation with matter.
8.1 Electromagnetic radiation.
8.2 Polarised light.
8.3 The electromagnetic spectrum.
8.4 Photons and their properties.
8.5 Selection rules.
8.6 The quantum mechanics of transition probability.
8.7 The nature of the time–independent interaction.
8.8 Spectroscopic time scales.
8.9 Quantum electrodynamics.
8.10 Spectroscopic units and notation

Koszyk

Książek w koszyku: 0 szt.

Wartość zakupów: 0,00 zł

ebooks
covid

Kontakt

Gambit
Centrum Oprogramowania
i Szkoleń Sp. z o.o.

Al. Pokoju 29b/22-24

31-564 Kraków


Siedziba Księgarni

ul. Kordylewskiego 1

31-542 Kraków

+48 12 410 5991

+48 12 410 5987

+48 12 410 5989

Zobacz na mapie google

Wyślij e-mail

Subskrypcje

Administratorem danych osobowych jest firma Gambit COiS Sp. z o.o. Na podany adres będzie wysyłany wyłącznie biuletyn informacyjny.

Autoryzacja płatności

PayU

Informacje na temat autoryzacji płatności poprzez PayU.

PayU banki

© Copyright 2012: GAMBIT COiS Sp. z o.o. Wszelkie prawa zastrzeżone.

Projekt i wykonanie: Alchemia Studio Reklamy