Jeżeli nie znalazłeś poszukiwanej książki, skontaktuj się z nami wypełniając formularz kontaktowy.

Ta strona używa plików cookies, by ułatwić korzystanie z serwisu. Mogą Państwo określić warunki przechowywania lub dostępu do plików cookies w swojej przeglądarce zgodnie z polityką prywatności.

Wydawcy

Literatura do programów

Informacje szczegółowe o książce

Introduction to Statistical Machine Learning - ISBN 9780128021217

Introduction to Statistical Machine Learning

ISBN 9780128021217

Autor: Sugiyama, Masashi

Wydawca: Elsevier

Dostępność: 3-6 tygodni

Cena: 555,45 zł

Przed złożeniem zamówienia prosimy o kontakt mailowy celem potwierdzenia ceny.


ISBN13:      

9780128021217

Autor:      

Sugiyama, Masashi

Oprawa:      

Paperback

Rok Wydania:      

2015-09-28

Tematy:      

UYQM

Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined together they are a powerful tool for analysing various kinds of data in many computer science/engineering areas including, image processing, speech processing, natural language processing, robot control, as well as in fundamental sciences such as biology, medicine, astronomy, physics, and materials.

Introduction to Statistical Machine Learning provides a general introduction to machine learning that covers a wide range of topics concisely and will help you bridge the gap between theory and practice. Part I discusses the fundamental concepts of statistics and probability that are used in describing machine learning algorithms. Part II and Part III explain the two major approaches of machine learning techniques; generative methods and discriminative methods. While Part III provides an in-depth look at advanced topics that play essential roles in making machine learning algorithms more useful in practice. The accompanying MATLAB/Octave programs provide you with the necessary practical skills needed to accomplish a wide range of data analysis tasks.



Provides the necessary background material to understand machine learning such as statistics, probability, linear algebra, and calculus.Complete coverage of the generative approach to statistical pattern recognition and the discriminative approach to statistical machine learning.Includes MATLAB/Octave programs so that readers can test the algorithms numerically and acquire both mathematical and practical skills in a wide range of data analysis tasksDiscusses a wide range of applications in machine learning and statistics and provides examples drawn from image processing, speech processing, natural language processing, robot control, as well as biology, medicine, astronomy, physics, and materials.

Part I: Introduction to Statistics and Probability 1. Random variables and probability distributions 2. Examples of discrete probability distributions 3. Examples of continuous probability distributions 4. Multi-dimensional probability distributions 5. Examples of multi-dimensional probability distributions 6. Random sample generation from arbitrary probability distributions 7. Probability distributions of the sum of independent random variables 8. Probability inequalities 9. Statistical inference 10. Hypothesis testing

Part II: Generative Approach to Statistical Pattern Recognition 11. Fundamentals of statistical pattern recognition 12. Criteria for developing classifiers 13. Maximum likelihood estimation 14. Theoretical properties of maximum likelihood estimation 15. Linear discriminant analysis 16. Model selection for maximum likelihood estimation 17. Maximum likelihood estimation for Gaussian mixture model 18. Bayesian inference 19. Numerical computation in Bayesian inference 20. Model selection in Bayesian inference 21. Kernel density estimation 22. Nearest neighbor density estimation

Part III: Discriminative Approach to Statistical Machine Learning 23. Fundamentals of statistical machine learning 24. Learning Models 25. Least-squares regression 26. Constrained least-squares regression 27. Sparse regression 28. Robust regression 29. Least-squares classification 30. Support vector classification 31. Ensemble classification 32. Probabilistic classification 33. Structured classification

Part IV: Further Topics 34. Outlier detection 35. Unsupervised dimensionality reduction 36. Clustering 37. Online learning 38. Semi-supervised learning 39. Supervised dimensionality reduction 40. Transfer learning 41. Multi-task learning

Koszyk

Książek w koszyku: 0 szt.

Wartość zakupów: 0,00 zł

ebooks
covid

Kontakt

Gambit
Centrum Oprogramowania
i Szkoleń Sp. z o.o.

Al. Pokoju 29b/22-24

31-564 Kraków


Siedziba Księgarni

ul. Kordylewskiego 1

31-542 Kraków

+48 12 410 5991

+48 12 410 5987

+48 12 410 5989

Zobacz na mapie google

Wyślij e-mail

Subskrypcje

Administratorem danych osobowych jest firma Gambit COiS Sp. z o.o. Na podany adres będzie wysyłany wyłącznie biuletyn informacyjny.

Autoryzacja płatności

PayU

Informacje na temat autoryzacji płatności poprzez PayU.

PayU banki

© Copyright 2012: GAMBIT COiS Sp. z o.o. Wszelkie prawa zastrzeżone.

Projekt i wykonanie: Alchemia Studio Reklamy