Jeżeli nie znalazłeś poszukiwanej książki, skontaktuj się z nami wypełniając formularz kontaktowy.

Ta strona używa plików cookies, by ułatwić korzystanie z serwisu. Mogą Państwo określić warunki przechowywania lub dostępu do plików cookies w swojej przeglądarce zgodnie z polityką prywatności.

Wydawcy

Literatura do programów

Informacje szczegółowe o książce

Brownian Motion Calculus - ISBN 9780470021705

Brownian Motion Calculus

ISBN 9780470021705

Autor: Ubbo F. Wiersema

Wydawca: Wiley

Dostępność: Dostawa 10-20 dni

Cena: 181,65 zł


ISBN13:      

9780470021705

ISBN10:      

0470021705

Autor:      

Ubbo F. Wiersema

Oprawa:      

Paperback

Rok Wydania:      

2008-04-15

Ilość stron:      

330

Wymiary:      

227x159

Tematy:      

KF

Link do Wydawcy:      

opis na stronie wydawcy

Brownian Motion Calculus
Ubbo Wiersema
Brownian Motion Calculus presents the basics of Stochastic Calculus with a focus on the valuation of financial derivatives. It is intended as an accessible introduction to the technical literature. The sequence of chapters starts with a description of Brownian motion, the random process which serves as the basic driver of the irregular behaviour of financial quantities. That exposition is based on the easily understood discrete random walk. Thereafter the gains from trading in a random environment are formulated in a discrete–time setting. The continuous–time equivalent requires a new concept, the Itō stochastic integral. Its construction is explained step by step, using the so–called norm of a random process (its magnitude), of which a motivated exposition is given in an Annex. The next topic is Itō’s formula for evaluating stochastic integrals; it is the random process counter part of the well known Taylor formula for functions in ordinary calculus. Many examples are given. These ingredients are then used to formulate some well established models for the evolution of stock prices and interest rates, so–called stochastic differential equations, together with their solution methods. Once all that is in place, two methodologies for option valuation are presented. One uses the concept of a change of probability and the Girsanov transformation, which is at the core of financial mathematics. As this technique is often perceived as a magic trick, particular care has been taken to make the explanation elementary and to show numerous applications. The final chapter discusses how computations can be made more convenient by a suitable choice of the so–called numeraire. A clear distinction has been made between the mathematics that is convenient for a first introduction, and the more rigorous underpinnings which are best studied from the selected technical references. The inclus ion of fully worked out exercises makes the book attractive for self study. Standard probability theory and ordinary calculus are the prerequisites. Summary slides for revision and teaching can be found on the book website www.wiley.com/go/brownianmotioncalculus.

Spis treści:
Preface.
1 Brownian Motion.
1.1 Origins.
1.2 Brownian Motion Specification.
1.3 Use of Brownian Motion in Stock Price Dynamics.
1.4 Construction of Brownian Motion from a Symmetric Random Walk.
1.5 Covariance of Brownian Motion.
1.6 Correlated Brownian Motions.
1.7 Successive Brownian Motion Increments.
1.8 Features of a Brownian Motion Path.
1.9 Exercises.
1.10 Summary.
2 Martingales.
2.1 Simple Example.
2.2 Filtration.
2.3 Conditional Expectation.
2.4 Martingale Description.
2.5 Martingale Analysis Steps.
2.6 Examples of Martingale Analysis.
2.7 Process of Independent Increments.
2.8 Exercises.
2.9 Summary.
3 Itō Stochastic Integral.
3.1 How a Stochastic Integral Arises.
3.2 Stochastic Integral for Non–Random Step–Functions.
3.3 Stochastic Integral for Non–Anticipating Random Step–Functions.
3.4 Extension to Non–Anticipating General Random Integrands.
3.5 Properties of an Itō Stochastic Integral.
3.6 Significance of Integrand Position.
3.7 Itō integral of Non–Random Integrand.
3.8 Area under a Brownian Motion Path.
3.9 Exercises.
3.10 Summary.
3.11 A Tribute to Kiyosi Itō.
Acknowledgment.
4 Itō Calculus.
4.1 Stochastic Differential Notation.
4.2 Taylor Expansion in Ordinary Calculus.
4.3 Itō’s Formula as a Set of Rules.
4.4 Illustrations of Itō’s Formula.
4.5 Lévy Characterization of Brownian Motion.
4.6 Combinations of Brownian Motions.
4.7 Multiple Correlated Brownian Motions.
4.8 Area under a Brownian Motion Path – Revisited.
4.9 Justification of Itō’s Formula.
4.10 Exercises.
4.11 Summary.
5 Stochastic Differential Equations.
5.1 Structure of a Stochastic Differential Equation.
5.2 Arithmetic Brownian Motion SDE.
5.3 Geometric Brownian Motion SDE.
5.4 Ornstein–Uhlenbeck SDE.
5.5 Mean–Reversion SDE.
5.6 Mean–Reversion with Square–Root Diffusion SDE.
5.7 Expected Value of Square–Root Diffusion Process.
5.8 Coupled SDEs.
5.9 Checking the Solution of a SDE.
5.10 General Solution Methods for Linear SDEs.
5.11 Martingale Representation.
5.12 Exercises.
5.13 Summary.
6 Option Valuation.
6.1 Partial Differential Equation Method.
6.2 Martingale Method in One–Period Binomial Framework.
6.3 Martingale Method in Continuous–Time Framework.
6.4 Overview of Risk–Neutral Method.
6.5 Martingale Method Valuation of Some European Options.
6.6 Links between Methods.
6.6.1 Feynman–Kač Link between PDE Method and Martingale Method.
6.6.2 Multi–Period Binomial Link to Continuous.
6.7 Exercise.
6.8 Summary.
7 Change of Probability.
7.1 Change of Discrete Probability Mass.
7.2 Change of Normal Density.
7.3 Change of Brownian Motion.
7.4 Girsanov Transformation.
7.5 Use in Stock Price Dynamics – Revisited.
7.6 General Drift Change.
7.7 Use in Importance Sampling.
7.8 Use in Deriving Conditional Expectations.
7.9 Concept of Change of Probability.
7.10 Exercises.
7.11 Summary.
8 Numeraire.
8.1 Change of Numeraire.
8.2 Forward Price Dynamics.
8.3 Option Valuation under most Suitable Numeraire.
8.4 Relating Change of Numeraire to Change of Probability.
8.5 Change of Numeraire for Geometric Brownian Motion.
8.6 Change of Numeraire in LIBOR Market Model.
8.7 Application in Credit Risk Modelling.
8.8 Exercises.
8.9 Summary.
ANNEXES.
A Annex A: Computations with Brownian Motion.
A.1 Moment Generating Function and Moments of Brownian Motion.
A.2 Probability of Brownian Motion Position.
A.3 Brownian Motion Reflected at the Origin.
A.4 First Passage of a Barrier.
A.5 Alternative Brownian Motion Specification.
B Annex B: Ordinary Integration.
B.1 Riemann Integral.
B.2 Riemann–Stieltjes Integral.
B.3 Other Useful Properties.
B.4 References.
C Annex C: Brownian Motion Variability.
C.1 Quadratic Variation.
C.2 First Variation.
D Annex D: Norms.
D.1 Distance between Points.
D.2 Norm of a Function.
D.3 Norm of a Random Variable.
D.4 Norm of a Random Process.
D.5 Reference.
E Annex E: Convergence Concepts.
E.1 Central Limit Theorem.
E.2 Mean–Square Convergence.
E.3 Almost Sure Convergence.
E.4 Convergence in Probability.
E.5 Summary.
Answers to Exercises.
References.
Index.

Nota biograficzna:
UBBO WIERSEMA was educated in Applied Mathematics at Delft, in Operations Research at Berkeley, and in Financial Economics and Financial Mathematics at the London School of Economics. He joined The Business School for Financial Markets (the ICMA Centre) at the University of Reading, UK, in 1997, to develop and teach its curriculum in Quantitative Finance. Prior to that, he was a derivatives mathematician at the merchant bank Robert Fleming in the City of London. Before that his career was focused in Operations Research in the US and Europe.

Okładka tylna:
Brownian Motion Calculus
Ubbo Wiersema
Brownian Motion Calculus presents the basics of Stochastic Calculus with a focus on the valuation of financial derivatives. It is intended as an accessible introduction to the technical literature. The sequence of chapters starts with a description of Brownian motion, the ra ndom process which serves as the basic driver of the irregular behaviour of financial quantities. That exposition is based on the easily understood discrete random walk. Thereafter the gains from trading in a random environment are formulated in a discrete–time setting. The continuous–time equivalent requires a new concept, the Itō stochastic integral. Its construction is explained step by step, using the so–called norm of a random process (its magnitude), of which a motivated exposition is given in an Annex. The next topic is Itō’s formula for evaluating stochastic integrals; it is the random process counter part of the well known Taylor formula for functions in ordinary calculus. Many examples are given. These ingredients are then used to formulate some well established models for the evolution of stock prices and interest rates, so–called stochastic differential equations, together with their solution methods. Once all that is in place, two methodologies for option valuation are presented. One uses the concept of a change of probability and the Girsanov transformation, which is at the core of financial mathematics. As this technique is often perceived as a magic trick, particular care has been taken to make the explanation elementary and to show numerous applications. The final chapter discusses how computations can be made more convenient by a suitable choice of the so–called numeraire. A clear distinction has been made between the mathematics that is convenient for a first introduction, and the more rigorous underpinnings which are best studied from the selected technical references. The inclusion of fully worked out exercises makes the book attractive for self study. Standard probability theory and ordinary calculus are the prerequisites. Summary slides for revision and teaching can be found on the book website
www.wiley.com/go/brownianmotioncalculus.

Koszyk

Książek w koszyku: 0 szt.

Wartość zakupów: 0,00 zł

ebooks

Kontakt

Gambit
Centrum Oprogramowania
i Szkoleń Sp. z o.o.

Al. Pokoju 29b/22-24

31-564 Kraków

+48 12 414 3791

+48 12 414 3387


Siedziba Księgarni

ul. Kordylewskiego 1

31-542 Kraków

+48 12 410 5989

+48 12 414 3767

Zobacz na mapie google

Wyślij e-mail

Subskrypcje

Administratorem danych osobowych jest firma Gambit COiS Sp. z o.o. Na podany adres będzie wysyłany wyłącznie biuletyn informacyjny.

Autoryzacja płatności

PayU

Informacje na temat autoryzacji płatności poprzez PayU.

PayU banki

© Copyright 2012: GAMBIT COiS Sp. z o.o. Wszelkie prawa zastrzeżone.

Projekt i wykonanie: Alchemia Studio Reklamy